HFOV and PPM
 HD Visible Camera

HFOV and PPM Calculations

Below are the calculations for the horizontal field of view and pixels per meter for our most popular camera lenses at $1 \mathrm{~km}, 5 \mathrm{~km}, 10 \mathrm{~km}$ and 25 km distances, when paired with a 2 MP $1 / 2.8^{\prime \prime}$ sensor.

	1 km			5 km	10 km
25 km					
315mm Lens (Phoenix 39X)	HFOV	17.3 m	86.4 m	172.7 m	432 m
	PPM	111	22	11	4.4
1000 mm Lens (Sigma 33X)	HFOV	5.5 m	27.2 m	54.4 m	136 m
	PPM	353	70	35	14
2050mm Lens (Viper 128X)	HFOV	2.7 m	13.3 m	26.6 m	66 m
	PPM	724	144	72	29

FOV Simulations at $\mathbf{1 k m}$

315 mm FOV at 1 km (17.3 m wide)

1000 mm FOV at 1 km (5.5 m wide)

2050 mm FOV at 1 km (2.7 m wide)

Above are simulations of what the field of view would look like when viewing a 12.5 m long vessel* 1 km away. These images represent how large objects would appear on the monitor, estimating a human height of 1.6 m to 1.7 m , and using six inch tall ship lettering.

PPM Simulations at 25km

315 mm Detail at 25 km (4.4 ppm)

1000 mm Detail at 25 km (14ppm)

2050mm Detail at 25 km (29ppm)

Above are simulations of the level of detail visible on a 17 m long fishing boat* 25 km away. These are not representations of the field of view, but rather the amount of detail if you were to digitally zoom into the image. Note that these simulations are based on perfect conditions, however in reality atmospheric distortion can greatly limit the amount of detail that can be seen 25 km away.

